Accurate image registration for MAP image super-resolution
نویسندگان
چکیده
The accuracy of image registration plays a dominant role in image superresolution methods and in the related literature, landmark-based registration methods have gained increasing acceptance in this framework. In this work, we take advantage of a maximum a posteriori (MAP) scheme for image super-resolution in conjunction with the maximization of mutual information to improve image registration for super-resolution imaging. Local as well as global motion in the low-resolution images is considered. The overall scheme consists of two steps. At first, the low-resolution images are registered by establishing correspondences between image features. The second step is to fine-tune the registration parameters along with the high-resolution image estimation, using the maximization of mutual information criterion. Quantitative and qualitative results are reported indicating the effectiveness of the proposed scheme, which is evaluated with different image features and MAP image super-resolution computation methods.
منابع مشابه
Robust Fuzzy Content Based Regularization Technique in Super Resolution Imaging
Super-resolution (SR) aims to overcome the ill-posed conditions of image acquisition. SR facilitates scene recognition from low-resolution image(s). Generally assumes that high and low resolution images share similar intrinsic geometries. Various approaches have tried to aggregate the informative details of multiple low-resolution images into a high-resolution one. In this paper, we present a n...
متن کاملMulti-frame Super Resolution for Improving Vehicle Licence Plate Recognition
License plate recognition (LPR) by digital image processing, which is widely used in traffic monitor and control, is one of the most important goals in Intelligent Transportation System (ITS). In real ITS, the resolution of input images are not very high since technology challenges and cost of high resolution cameras. However, when the license plate image is taken at low resolution, the license...
متن کاملA Deep Model for Super-resolution Enhancement from a Single Image
This study presents a method to reconstruct a high-resolution image using a deep convolution neural network. We propose a deep model, entitled Deep Block Super Resolution (DBSR), by fusing the output features of a deep convolutional network and a shallow convolutional network. In this way, our model benefits from high frequency and low frequency features extracted from deep and shallow networks...
متن کاملPseudo Zernike Moment-based Multi-frame Super Resolution
The goal of multi-frame Super Resolution (SR) is to fuse multiple Low Resolution (LR) images to produce one High Resolution (HR) image. The major challenge of classic SR approaches is accurate motion estimation between the frames. To handle this challenge, fuzzy motion estimation method has been proposed that replaces value of each pixel using the weighted averaging all its neighboring pixels i...
متن کاملAccurate Registration for Low Resolution Images using Wavelet Neural Networks: A Novel Approach
Accurate registration of multiple low resolution images is of central importance in many advanced image processing applications, since capturing of multiple low-resolution images taken of the same scene results in a distortion between each image. Image super-resolution is a typical application where the quality of the super-resolved image is degraded as registration errors increase. In this pap...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Sig. Proc.: Image Comm.
دوره 28 شماره
صفحات -
تاریخ انتشار 2013